COACH

FORMATION ET EXPERTISE ECLIPSE

GenModelAddon

Modeling Symposium ECE 2016
26 October 2016

GenModelAddon

OPCoach

(OPCOACH

ECLIPSE TRAINING AND CONSULTING

Olivier PROUVOST

Eclipse Expert

25 rue Bernadette - 31100 Toulouse (France)
+33(0)6 28 07 65 64
olivier.prouvost@opcoach.com
@OPCoach_Eclipse

www.opcoach.com

i
=)
=
®
©

» Training/Consulting : RCP, E4, Modeling, Build, given in French, English and ... Spanish

> http://www.opcoach.com/’
» @OPCoach_Eclipse, @OPCoach_Job

MDD best practices

» Separate the generated code and overridden code
» Do not commit the generated code
» Integrate the generation process to build
» Override the generated class using inheritance
» Generate a clean code: even if it is generated, it must be human readable
» Test generation with a default model
Source article : http://www.infog.com/articles/model-driven-dev-best-practices 2

genmodeladdon

genModelAddon will help you to achieve this goals
> It provides a way to split the generated code into src-gen and src

1 - http://www.opcoach.com/en
2 - http://www.infoq.com/articles/model-driven-dev-best-practices

http://www.infoq.com/articles/model-driven-dev-best-practices
http://www.opcoach.com/en

(OPCOACH

ECLIPSE TRAINING AND CONSULTING

YV V V V

>

It manages inheritance, subpackages and referenced models

It works with generics

It inifializes the factory override extension

It uses the main EMF generation for the generated part (compliant with CDO)

It produces all the classes in the developper part
genModelAddon is hosted here : http://opcoach.github.io/genModelAddon/?
It is fully written using E4 style (model fragments and injection)

. [# Package Explorer 53

v i test

¥ [##src-gen -
¥ H# com.opcoach.project
¥ |J] MCompany.java
|J] MPerson.java
|4] MProject.java
|4] MProjectFactory.java
|4] MProjectPackage.java
b |J] MTask.java
» (:Bcom.opcoach.pro,ect.impl
» (;B com.opcoach.project.util
» H:} com.opcoach.project.validation

LA J

T(Bsc -
¥ H# com.opcoach.project
¥ |J] Company.java
» [J] Persen.java
|J] Project.java
» |J] ProjectFactory.java
b |J] Task java
> (:Bcom.opcoach.pro,ect.impl

® B\ JRE System Library [Java SE 8 [1.8.0_20]]

P = Plug-in Dependencies
¥ (= META-INF
¥ (= model

#| project.ecore

|| project.genmodel

3 - http://opcoach.github.io/genModelAddon/

a4

Generated code

A J

Developer code

ecore and genmodel

http://opcoach.github.io/genModelAddon/

(OPCOACH

ECLIPSE TRAINING AND CONSULTING

How fo install it ?
Just look for 'genModelAddon' on the market place :

Eclipse Marketplace

Select solutions to install. Press Install Now to proceed with installation.
Press the "more info" link to learn more about a solution.

Recent Popular Favorites Installed g September Newsletter (loT)

Find: Q genModelAddon Q All Markets o] All Categories] Go

genModelAddonv1.6.3

F\ - This project will help you to separate properly the EMF generated code and your developed
’ code. When you generate the EMF code, you probably override it with the... more info

_ """ byoOPCoach, EPL

EMF code generation Ecore

w 0 fo Installs: 10 (8 last month) Install

Marketplaces

v 9

® Cancel

(OPCOACH

ECLIPSE TRAINING AND CONSULTING

How fo use it ?

In your genmodel editor, right click on the root node :

‘& project.genmodel 52
i
Generate Model Code
Generate Edit Code
Generate Editor Code
Generate Test Code
Generate All

Generate Developper Structure

Open Ecore
Open GenModel

EEF >

And then fill the dialog with relevant values :

[O] Developer Structure Generation Parameters

Parameters set in genModel (src-gen)

Edit values Set relevant values Restore genModel values

Gen source directory : src-gen
Gen Interface pattern name : | M{0}

Gen Class pattern name : M{C}HmplSource

Parameters for dev generation (src)

Dev source directory : src

Dev Interface pattern name : | {0}

Dev Class pattern name : |{0}Impl |

This value will be used to generate the dev
source structure. {0} is the name of the EClass.
A good idea here is to keep the default names

| when the ‘M’ prefix has been added for the

_ generated classes.
Example : {0}mpl for the EClass 'Car' will

generate the 'Carlmpl' class extending the
MCarlmpl class and implementing the MCar
interface.

(OPCOACH

ECLIPSE TRAINING AND CONSULTING

In your code you can directly use your developper code :

// MProjectFactory is the generated factory. It was used like this :
MProjectFactory mfactory = MProjectFactory.eINSTANCE;

MTask mt = mfactory.createTask();

// Now the ProjectFactory extends the MProjectFactory and
// creates instances of the developer objects. You can get it directly like this :
ProjectFactory factory = ProjectFactory.eINSTANCE;

Task t = factory.createTask();

Some metrics
» started in december 2014
» 59issues (57 closed)
» 67 unit tests
» hosted on github
>
How to be involved
There is a slack channel to be informed about :
» new releases
» issue fixes
» general discussions about the project
During the conference :
» ask me ademo

After the conference :
» ask me questions : olivier@opcoach.com

used by several companies (Sogeti, Airbus, ...

)

You can get an example of generated code here :

https://github.com/opcoach/genModelAddon

in the 'example’ folder. The model folder contains the model and the

genmodel.

https://github.com/opcoach/genModelAddon
mailto:olivier@opcoach.com

